
Cesare Ferrari 
https://github.com/cesaref/ADC2021

Additive Synthesis using the 
CORDIC algorithm



What we’ll cover

• What is Additive Synthesis?

• The CORDIC algorithm

• Implementing Additive Synthesis efficiently

• Generating harmonic envelopes

• Creative opportunities



What is Additive Synthesis?



Additive Synthesis

• Model our sound as the sum of sine waves


• Apply envelopes to the pitch and amplitude of each sine over the course of 
the note


• It is common for oscillator pitches to be fixed and to form the harmonic series 
of a played note but this is not necessary



Additive Synthesis

• This is not fourier analysis - we can however use fourier analysis to build our additive model


• Consider a swept sine wave. In additive terms, it’s a single sine oscillator changing in pitch. 
In fourier analysis, it’s flat in frequency response



Additive Synthesis
• Hammond Organ (1935-)


• Uses tone wheels to generate 
harmonics


• sliders allow the harmonics to be 
configured for each manual


• 9 harmonics per note



Additive Synthesis

• Kawai K5000 (1996)


• Combined PCM (Sample) and Additive oscillators, 64 harmonics, Formant 
Filter, Morphing, with a ghastly digital filter implementation



Additive Synthesis

vintagesynth.com


Kai: ‘I sold mine, horrible machine to program.’


Dmitry: ‘Simply. The. Best. Synthesizer. Ever.’

http://vintagesynth.com


Additive Synthesis

Modern plugins:


• NI’s Razor


• Apple’s Alchemy



Additive Synthesis

Spectrogram of Rhodes Piano sample


Strong horizontal lines occurring at overtones of the fundamental



Additive Synthesis

Spectrogram of Crash Cymbal


No harmonic structure - horizontal lines do not form a harmonic series



Additive Synthesis

Spectrogram of Equator Patch


A mixture of strong harmonic lines and additional ‘noise’



The CORDIC algorithm



How did the sin() button on calculators work?

Early calculators had a very simple processor supporting integer arithmetic, and limited memory

Operations like add and multiply were performed digit by digit in decimal

How were the trigonometric functions implemented 
using add and multiply?



Complex numbers
• Complex numbers are of the form a + bi, with 

the property that i2 = -1


• Multiplying two complex numbers gives: 
 
(a + bi) * (c + di) = ac + adi + bci + bdi2 
 
                          = (ac - bd) + (ad + bc)i


• If expressed in polar coordinates, this is 
equivalent to multiplying the magnitudes, and 
adding the angles



Complex numbers
• Imagine multiplying a complex number by the unit vector cos(𝜗) + sin(𝜗)i


• This vector has a magnitude of 1, and angle of 𝜗. The result is rotated by 𝜗, 
but it’s magnitude is unchanged.


• Repeated multiplication by this vector causes the result to rotate by the 
angle a each time



CORDIC algorithm (Volder’s algorithm)

• The CORDIC algorithms explore this analysis, and produce efficient ways of 
breaking down functions like sin(𝜗) to being a series of operations on known values 


• Rather than repeatedly applying the same rotation, the algorithm applies either 
clockwise or counterclockwise rotations with angles following a power series to 
converge on the result. The values to apply are taken from a lookup table


• By always applying the same rotations (clockwise or counterclockwise) the exact 
error can be pre-calculated for a given number of operations, so the required 
number of stages to reach a given precision can be calculated


• By using rotation vectors of non-unit length (noticing that cos(𝜗) approaches 1 for 
small 𝜗) the operations are further reduced, at the cost of adding a single multiply at 
the end to correct the vector length

The CORDIC Computing Technique (1959) 
http://home.citycable.ch/pierrefleur/Jacques-Laporte/Volder_CORDIC.pdf



HP 9100A (1968)



Sinclair scientific calculator (1974)

• Sinclair had only 320 words of memory for the entire calculator 
logic. Instead of using CORDIC, the sin() function used repeated 
rotation by 0.001 radians using the operation: 
 
C = C - S/1000 
S = S + C/1000


• So to work out sin(0.5) the above would be applied 500 times. It 
wasn’t fast, but it got the job done (to 3 digits of precision)


• http://files.righto.com/calculator/sinclair_scientific_simulator.html



So what?



So what?
• For additive synthesis, we need to calculate the sin() function a lot (say, 64 sine 

oscillators per voice, 32 voices, 48k samples per second = 98 million per second)


• The sin() function is accurate, but it isn’t fast


• The majority of the time, we are not calculating arbitrary sin() values, but the next 
phase increment from a previous sin() value.


• But since complex multiplication can generate rotation with carefully chosen 
values, we can generate the series of sine values we need for a sine oscillator just 
by multiplying a unit vector by an appropriate rotation value


• Complex multiplication requires 4 multiplies and 2 adds, and there are no 
conditional code paths. Fused multiply/add is heavily optimised in modern FPUs



Implementing the algorithm



Calculating a sin wave with CORDIC

processor Sine

{

    output stream float32 out;

    input event float32 frequency;


    event frequency (float32 noteFrequency)

    {

        phaseIncrement = float (noteFrequency * twoPi * processor.period);

    }


    float phase, phaseIncrement;


    // ------------------------

    void run()

    {

        loop

        {

            phase += phaseIncrement;


            if (phase > twoPi)

                phase -= float (twoPi);


            out << sin (phase);

            advance();

        }

    }        

}


processor CordicSine

{

    output stream float32 out;

    input event float32 frequency;


    event frequency (float32 noteFrequency)

    {

        let phaseIncrement = float (noteFrequency * twoPi * processor.period);


        multiplier.real = cos (phaseIncrement);

        multiplier.imag = sin (phaseIncrement);

    }


    complex value = 1, multiplier = 1;


    // ------------------------

    void run()

    {

        loop

        {

            value = value * multiplier;

            out << value.imag;

            advance();

        }

    }        

}




Demo



Calculating a sin wave with CORDIC

• The CORDIC implementation is stable, doesn’t gain or loose amplitude and is 
stable in pitch


• It diverges from the equivalent sin() implementation in phase, but very slowly


• The cause of the divergence is the limitations of float32 accuracy - it’s not clear 
which is moving away from which, but it’s accurate enough for synthesis 
purposes


• I guess calling it CORDIC is a stretch, and maybe ‘vector rotation’ would be a 
more accurate description, but i wouldn’t have had the chance to mention the 
cool work by Jack Volder 



Calculating a bank of sin waves with CORDIC
processor SawOsc [[ main ]]

{

    output stream float32 out;

    input event float32 frequency [[ name: "Frequency", min: 20, max: 10000, init: 500 ]];


    let harmonics = 64;


    event frequency (float32 noteFrequency)

    {

        amplitudes = 0;


        for (wrap<harmonics> i)

        {

            let harmonicFrequency = noteFrequency * float (i+1);

            let phaseIncrement = float (harmonicFrequency * twoPi * processor.period);


            multiplier[i].real = cos (phaseIncrement);

            multiplier[i].imag = sin (phaseIncrement);


            if (harmonicFrequency < (processor.frequency /2))

                amplitudes[i] = 1.0f / float(i+1);

        }

    }


    complex<harmonics> value = 1, multiplier = 1;

    float<harmonics> amplitudes;


    // ------------------------

    void run()

    {

        loop

        {

            value = value * multiplier;

            out << sum (value.imag * amplitudes);

            advance();

        }

    }        

}


processor CordicSine

{

    output stream float32 out;

    input event float32 frequency;


    event frequency (float32 noteFrequency)

    {

        let phaseIncrement = float (noteFrequency * twoPi * processor.period);


        multiplier.real = cos (phaseIncrement);

        multiplier.imag = sin (phaseIncrement);

    }


    complex value = 1, multiplier = 1;


    // ------------------------

    void run()

    {

        loop

        {

            value = value * multiplier;

            out << value.imag;

            advance();

        }

    }        

}




Demo



Calculating a bank of sin waves with CORDIC

• Scaling to multiple harmonics is simple - it’s just a vector of complex 
numbers.


• Additional cost of summing across the harmonic values, and applying 
scaling factors which again vectorises well


• Anti-aliasing is trivial!


• Easy to implement different waveform shapes - trades off CPU use vs 
memory use (compared to say, wavetable synthesis)



Performance figures

%
 C

PU
 U

til
is

at
io

n

0

1

2

3

4

5

Oscillators
32 64 128 256 512 1024 2048

sin() CORDIC

The CORDIC algorithm is around 16-20 times faster than the sin() algorithm

(intel i7 with AVX)



Building an instrument



Build a subtractive synth
We could use the sine bank oscillator directly in a subtractive synth architecture

Pros


• Free control of the harmonics present in the timbre, supporting user configurable harmonic content


• Reasonably efficient to implement - heavier use of compute vs more memory intense approaches (e.g. 
wavetable)


• Alias free by design


• Interesting tone shaping options hard to achieve otherwise (see later), and hence could be a useful different 
waveform flavour to add to an existing design


Cons


• Why bother? MinBLEP rocks!


• High harmonic count needed for low notes


• Hard to implement common subtractive effects e.g sync, pulse width modulation



Build a pure additive synth
Let’s go for it, additive all the way!

Pros


• Total freedom to program envelopes for both pitch and amplitude for 
hundreds of harmonics


• Ability to model unique sounds not achievable any other way


• Very conducive to mapping performance parameters to create an organic feel


Cons


• OMG, how do you program this thing?



Build a hybrid synth
Ok, so maybe there’s a middle ground

Pros


• Keep the synth architecture familiar, so oscillator banks, filters, amplitude envelopes etc


• Incorporate standard filter designs rather than relying solely on harmonic manipulation


• Provide tooling to import and generate harmonic content from samples, and graphical representations 
to massage the generated envelopes (e.g a spectrogram view and ‘dodge/burn’ manipulation tools)


• Use other generators to reinforce the sound, e.g sample playback for attack transients, noise sources 
etc


Cons


• Will upset purists



Build a hybrid synth

Harmonic 
Envelope 
Source

OscillatorBank

Sample Player

Shaped Noise 
Source

Filter Amplitude 
Envelope

• Oscillator bank with fixed harmonic series

• Per harmonic envelope source

• Sample player with a range of attack transients

• Noise source to avoid clinical sound



Envelope Source

processor AmplitudeSource (int size = 64, int stepRate = 1024)

{

    input event soul::note_events::NoteOn noteOn;

    output stream float<size> out;


    float<size>[] amplitudes = ( … );


    event noteOn (soul::note_events::NoteOn e)

    {

        value = amplitudes[0];

        increment = (amplitudes[1] - amplitudes[0]) / stepRate;

        nextSlot = 1;

        steps = stepRate;

    }


    void next()

    {

        increment = 0;

        steps = stepRate;


        if (nextSlot < amplitudes.size - 1)

        {

            value = amplitudes.at (nextSlot);

            increment = (amplitudes.at (nextSlot + 1) - amplitudes.at (nextSlot)) / stepRate;

            nextSlot++;

            steps = stepRate;

        }

   }


    float<size> value, increment;

    int nextSlot, steps;

    void run()

    {

        loop

        {

            out << value;

            value += increment;

            steps--;

            if (steps == 0) next();

            advance();

        }

    }

}



Generating Harmonic Envelopes



Generating harmonic envelopes

• Analyse a sample, determining the fundamental frequency of the tone


• Generate envelopes for each harmonic at different positions within the sample


• Build a table of envelope values for each harmonic


• Use correlation and a suitable window to reduce artefacts


• Use a limited dynamic range to avoid sample noise being interpreted as 
harmonic energy



Generating harmonic envelopes

For each harmonic frequency


For each time slice


Build a windowed slice of the sample around the time point


Correlate the sample slice with the harmonic frequency


The harmonic amplitude is the correlation value at this time point



Generating harmonic envelopes
    std::vector<float> getEnvelope (float frequency)

    {

        std::vector<float> result;


        int offset = 0;


        float phaseIncrement = frequency / sampleRate;

        const float twoPi = 3.14159265f * 2.0f;


        while (offset < sample.getNumFrames())

        {

            float phase = 0.0f;

            float real = 0.0f, imag = 0.0f;


            // Correlate the signal with our frequency

            for (int i = 0; i < framesPerSample; i++)

            {

                float s = window[i] * sample.getSampleIfInRange (0, offset + i);

                real += s * sin (phase * twoPi);

                imag += s * cos (phase * twoPi);


                phase += phaseIncrement;


                if (phase > 1.0f)

                    phase -= 1.0f;

            }


            float v = sqrt ((real * real) + (imag * imag)) / framesPerSample;


            v = v * 4.0f;   // Correct amplitude


            if (v < threshhold)

                v = 0.0f;


            result.push_back (v);


            offset += framesBetweenSamples;

        }


        return result;

    }

• We analyse the sample in blocks of framesPerSample

• We analyse the sample every framesBetweenSamples

• Assuming the amplitude is above a threshold, we use 

this (otherwise use 0)



Demo

Putting it all together



Creative opportunities



Creative effects
There are various interesting effects which can be applied to an additive model that are hard to do with 
other techniques:

Odd/Even harmonic balance


By applying a scaling factor to either the even or odd harmonics, the relative amplitude of these 
harmonics can be changed, leading to a change in tone, from a nasal character to a hollow tone. 
It’s similar to the change you hear moving from Saw to Square waveforms

Randomising effects


You can apply random modifications to the amplitudes, frequencies, or initial phase to generate 
variation when repeating notes, to avoid artificially similar sounds

Morphing


By transitioning between two or more envelopes, interesting morphing and layering effects can 
be created. Unlike sample based systems, there are no phase related cancellations



Creative effects

Rotating envelopes


Who says that harmonic envelopes need to be applied to the original harmonic number? By 
mixing things up, weird and unique sounds can be achieved

Slow down/speed up envelopes


We can move through the envelopes at a different rate than they were captured. Slow evolving 
sounds emerge from otherwise recognisable envelopes. 



Questions?


